Synthesis, Characterization and Application of Four Novel Electrochromic Materials Employing Nitrotriphenylamine Unit as the Acceptor and Different Thiophene Derivatives as the Donor

نویسندگان

  • Shuai Li
  • Guoliang Liu
  • Xiuping Ju
  • Yan Zhang
  • Jinsheng Zhao
  • Hyeonseok Yoon
چکیده

In this study, four novel donor–acceptor systems, 4-(2,3-dihydrothieno[3,4-b][1,4]dioxin5-yl)-N-(4-(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)phenyl)-N-(4-nitrophenyl)aniline (NETPA), 4-(4methoxythiophen-2-yl)-N-(4-(4-methoxythiophen-2-yl)phenyl)-N-(4-nitrophenyl)aniline (NMOTPA), 4-(4-methylthiophen-2-yl)-N-(4-(4-methylthiophen-2-yl)phenyl)-N-(4-nitrophenyl)aniline (NMTPA) and 4-nitro-N,N-bis(4-(thiophen-2-yl)phenyl)aniline (NTTPA), were successfully synthesized by Stille coupling reaction and electropolymerized to obtain highly stable conducting polymers, PNETPA, PNMOTPA, PNMTPA and PNTTPA, respectively. The polymers were characterized using cyclic voltammetry (CV), step profiling and UV–Vis–NIR spectroscopy. The band gaps (Eg values) were 1.34, 1.59, 2.26, and 2.34 eV, for PNETPA, PNMOTPA, PNMTPA and PNTTPA, respectively. In addition, electrochromic switching showed that all polymers exhibit outstanding optical contrasts, high coloration efficiencies and fast switching speeds in the near-infrared region (NIR). These properties make the polymers suitable materials for electrochromic applications in NIR region.

منابع مشابه

The Availability of Neutral Cyan, Green, Blue and Purple Colors from Simple D–A Type Polymers with Commercially Available Thiophene Derivatives as the Donor Units

In this paper, the Stille coupling reaction was used to prepare four donor–acceptor–donor (D–A–D) type monomers. For this purpose, 2,3-bis(4-methoxyphenyl) quinoxaline was used as the acceptor unit, and thiophene derivatives (3,4-ethylenedioxythiophene, or EDOT; 3-methoxythiophene, or MOTh; 3-methylthiophene, or MTh; and thiophene, or Th) were used as the donor units. The monomers were polymeri...

متن کامل

Low Band Gap Donor–Acceptor Type Polymers Containing 2,3-Bis(4-(decyloxy)phenyl)pyrido[4,3-b]pyrazine as Acceptor and Different Thiophene Derivatives as Donors

Four donor–acceptor type conducting polymers, namely poly(2,3-bis(4-decyloxy)phenyl)5,8-bis(4-thiophen-2-yl)pyrido[4,3-b]pyrazine) (P1), poly(2,3-bis(4-decyloxy)phenyl)-5,8bis(4-butylthiophen-2-yl)pyrido[4,3-b]pyrazine) (P2), poly(2,3-bis(4-(decyloxy)phenyl)-5,8bis(4-hexyloxythiophen-2-yl)pyrido[4,3-b]pyrazine) (P3) and poly(2,3-bis(4-(decyloxy)phenyl)-5,8bis(2,3-dihydrothieno[3,4-b][1,4]dioxin...

متن کامل

Synthesis, Antimicrobial and Electrochemical Studies of Four Substituted Isatin Derivatives at a Glassy Carbon Electrode

Isatins, derivatives of indole, represent important class of compounds belonging to nitrogen heterocycles. These compounds comprise synthetically vital substrates that are used as precursors for drug synthesis and raw materials for heterocycles etc. Research in this group of compounds has engrossed interest among scientific community in recent and past as Isatins are known to possess immense bi...

متن کامل

Effect of donor to acceptor ratio on electrochemical and spectroscopic properties of oligoalkylthiophene 1,3,4-oxadiazole derivatives.

A structure-property study across a series of donor-acceptor-donor structures composed of mono- and bi-(1,3,4-oxadiazole) units symmetrically substituted with alkyl functionalized bi-, ter- and quaterthiophene segments is presented. Synthetically tailoring the ratio of electron-withdrawing 1,3,4-oxadiazole to electron-releasing thiophene units and their alkyl grafting pattern permitted us to sc...

متن کامل

Three-component Process for the Synthesis of Some Thiophene Derivatives Using Water as a Green Media

A convenient and efficient three-component reaction to a one-pot synthesis of thiophene derivatives from activated acetylenic compounds and ethyl 2chloroacetoacetate in the presence of tetramethyl thiourea in water lead to the formation of thiophenes in good yields.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017